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The initial development of a jet caused by fluid, 
body and free-surface interaction. 

Part 1. A uniformly accelerating plate 
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School of Mathematics, University of East Anglia, Norwich, UK 

(Received 4 May 1993 and in revised form 24 November 1993) 

The flow field induced by a vertical plate accelerating into a stationary fluid of finite 
depth with a free surface and a gravitational restoring force is investigated. This is a 
model problem for some technologically important design issues such as the bow 
splash of a ship moving at forward speed. Experimentally it is found that a thin jet 
forms on the plate and rises rapidly upwards. We investigate this jet in the small-time 
approximation and find an analytical solution for the flow field in which the jet emerges 
out of a thin region where the horizontal momentum of the main flow is converted by 
inertial effects into a rising jet. 

1. Introduction 
There is a long history of experimental and theoretical studies of the interaction 

between a solid body and a fluid with a free surface. One outstanding, and occasionally 
dramatic, feature of the fluid/body interaction is that of jet formation. As examples of 
this, a ship moving at forward speed can carry with it a large bow splash, and the 
impact of a wave on a tidal barrage (or any form of sea defence) may cause a large jet 
of water to rise vertically. These jets are of some practical importance as they may 
affect the stability of a vessel or cause wear and damage to a barrage. 

At the present time the effect of these jets is assessed by either scale model 
experiments or, more commonly, numerical simulations of the flow. For the details of 
various numerical schemes and an extensive source of references see Greenhow (1993). 
Any numerical scheme that attempts to follow the evolution of such a jet caused by a 
body being moved impulsively into the fluid must address the question of what spatial 
resolution is needed to accurately model the jet. The thickness of a jet forming on an 
undisturbed free surface is initially zero and subsequently increases. The accuracy and 
efficiency of the numerical calculation of such a flow may be improved if the order of 
magnitude of this jet thickness is known apriori; a discussion of this issue can be found 
in Greenhow (1987). It is worth pointing out that for wedge entry problems, which are 
commonly used to model ship-slamming, the flow is intrinsically self-similar so that the 
temporal evolution of jet thickness is known a priori. However, the resolution of the 
spatial structure of the jet still poses considerable difficulty. Recent work on this type 
of flow can be found in Cointe & Armand 1987, Cointe 1989 and Howison, Ockendon 
& Wilson 1991. 

This paper studies the small time evolution of a jet which is formed when a vertical 
plate is accelerated into a stationary fluid of finite depth with a free surface and 
gravitational restoring force. It is clear that this model problem is related to the initial 
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motion of a slender ship accelerating from rest, where the flow, in a plane transverse 
to the motion, is that of a plate moving into a stationary body of fluid with a free 
surface. This particular jet problem has been studied experimentally by Greenhow & 
Lin (1983) in the context of wavemakers and ship-slamming, and with particular 
reference to jet formation by Yong & Chwang (1992). An interesting, although 
unpublished, theoretical study of this problem was carried out by Peregrine in 1972 
who developed a solution that was valid except in a neighbourhood of the free- 
surface/plate intersection where a singularity developed. 

Essentially the same analysis although with a greater variety of plate motions was 
carried out by Chwang (1983). A method of avoiding the above-mentioned singularity 
was devised by Roberts (1987) who treated a transient wavemaker problem by an 
expansion in wavemaker amplitude. A train of very short-wavelength dispersive waves 
was found near to the moving boundary. This study was extended by Joo, Schultz & 
Messiter (1990) to include capillary effects and it was shown that the prescription of a 
contact angle between the wavemaker and fluid could supress the short-wavelength 
wiggles found by Roberts. One feature of the solutions of Roberts and Joo el al. that 
is of some note is the free-surface slope at the contact point jumps to a finite value in 
infinitesimally small time. We return to a discussion of this point in $3 of this paper. 
Most recently this problem has been studied by Frankel (1990) in the context of a 
slightly compressible fluid. However, in the limit of zero compressibility the singularity 
that was found by Peregrine reappears at the free surface/plate intersection. 

We now readdress the basic problem of a plate accelerating into a fluid at rest with 
a free surface by using matched asymptotic expansions to construct a uniformly valid 
small-time solution which holds for arbitrary parameter values. The analysis of a 
surface-piercing plate impulsively moved into a fluid with constant velocity requires a 
more sophisticated asymptotic theory. This will be given in Part 2 of this work. We take 
as a starting point the Euler equations for incompressible inviscid flow and construct 
an asymptotic solution to these with the time ( t )  as small parameter. In this particular 
problem the flow is irrotational and we could work with a velocity potential from the 
outset. We choose not to do this for two reasons. In physical variables we feel there is 
rather more insight into the pressure and velocity field which causes the jet. 
Furthermore, for a slightly compressible fluid which is rapidly accelerated such as 
water-hammer problems, there is the possibility of a curved shock front being formed. 
By Crocco’s theorem this would generate vorticity and we would then be forced to 
return to the Euler equations as the irrotationality is lost. The basic outer solution 
contains a non-uniformity, which manifests itself as a singularity at the free 
surface/plate intersection, and is caused by the neglect of the fluid inertia near to the 
plate. On rescaling to a region near to the plate it is necessary to solve the full nonlinear 
free-surface flow problem. However, the boundary conditions are rather simpler than 
the original ones and a simple exact solution can be found which represents a thin jet 
of fluid rising uniformly up the plate. The spatial structure of the flow in this region 
is found by further considering higher-order terms in this inner region. We conclude 
by surveying other free-surface flow problems of possible practical importance which 
can be treated by the methods of this paper. 

2. Mathematical analysis 
The initial boundary value problem for a semi-infinite strip of inviscid and 

incompressible fluid which is disturbed from its equilibrium under a gravitational body 
force by a vertical plate accelerating so as to try to compress the fluid is now 
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FIGURE 1 .  Definition sketch of the initial development of the jet on a moving plate. 

considered. A definition sketch of the flow is given in figure 1. Initially the fluid is at 
rest above a rigid bed with depth h. A Cartesian (x*,y*) coordinate system with an 
origin on the undisturbed free surface and x*-axis in the direction of the plates motion 
is chosen as shown in figure 1. We find it convenient to work with physical variables 
so that thc Euler equations of fluid motion together with kinematic and zero-pressure 
free-surface conditions are taken to govern the dynamics of this system. 

It is convenient to non-dimensionalize the physical problem using the trans- 
formations 

where x* and q* are the position and fluid velocity vectors, t* is time and p* the 
pressure. A mathematical statement of the above problem can now be written in the 
form 

u, + uy = 0, (2.2) 
ut + uu, + llUY = - p ,  , (2.3) 

Ut+uu,+Vl’y  = -py- 1 . (2.4) 
On denoting the free surface by y = ~(x, t) ,  equations (2.2)-(2.4) are to be solved 
subject to ~ ( x ,  0) = u(x,y,O) = u(x,y, 0) = 0 as initial conditions. On the free surface 
we have 

u = r,lt+uqz, p = 0. (2.5) 
The plate is given a uniform acceleration, u > 0, so that its location at time t is given 
by x = at2 and we have the further condition on the moving plate, 

x = x*/h, q = q”/(gh)i, t = t”(h/g)i, p = p*/pgh, (2.1) 

u(at”y,y) = 20-4 (2.6) 
where the parameter cr = a/2g is the ratio of plate acceleration to gravitational 
acceleration. On the rigid bed we have v(x, - 1, t )  = 0 and as x+ 00 we insist that 
u, u + 0 and p + -y .  The solution domain for this set of equations is unknown at this 
stage of the analysis but is conveniently described as D(t) = { ( x , y ) : d  6 x 6 co, 
- 1 6 y < v(x, t)}. 

A small-time solution to (2.1k(2.6) may be developed by posing the expansions 

u = tu,(x, y )  + O(t”>, 

P = p0(x,  y> + &(x, y )  + Q(tz), T = t2qz(.x) + O(P) 

u = tu,(x, y )  + U(t”, (2.7a, b)  

(2.7 c, d )  

as t+O with x = 0(1), together with a domain decomposition D(r) = D(0) u O(t2) 
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where D(0) is the semi-infinite strip of the undisturbed fluid. At leading order we find 
the following boundary value problem to solve in D(0): 

ul,,+Ul,, = 0, (2.8) 

u1 = -Po, z 3 Ul = -PO, y - 7 (2.9) 

u~(O,.Y) = 20-> u ~ ( x , ,  - 1) = 0, 7 2  = $U,(X,  O), p,(x,  0) = 0, (2.10) 

subject to the conditions 

with u,, u1+0 andp,+-y as x +  co. 
It is clear from (2.8) and (2.9) that p,, is harmonic in the strip 0 < x < co, - 1 d y < 0 

and a solution to the above problem may be found by standard separation-of-variable 
methods in the form 

(2.1 1) 

(2.12) 

The series in (2.12) can be summed exactly to give r2 = (2a/n)ln(cothn:x/4) which 
reveals a singularity in the free-surface elevation as x+O. This singularity is also 
present in p,, as x,y+O and is compounded by higher-order terms in the expansions 
(2.7). This non-uniformity in the expansion about the intersection of the plate and free 
surface reveals (2.7) to be an outer expansion to this problem. To correctly capture the 
behaviour in the neighbourhood of the plate and free-surface intersection we require 
an inner region in which x,y = o(1) as t + O .  To motivate the form of the inner 
expansion we require the local behaviour of the pressure p,, as (2 +yz) i  -+ 0. Using the 
closed-form expression for T~ above and defining P by p o  = -y-2aP we are led to 
consider the following boundary problem in the quarter-plane 0 9 r 9 03, 

V Z P = O  sat. P o =  r on 8 =  --in, P=O on 0 =  0, 

--in < 8 < 0: 

and r+O(r3)  on 8 = 0 ,  

where (Y, 0) are the standard polar coordinates based at the Cartesian origin. As we are 
interested in the solution for r small we pose a coordinate expansion in the form 

P = rInrg(O)+rh(8)+o(r) as r+O,  (2.13) 

and some simple computations show that 

2 
g(8) = --sin8 and h(8) = 

7T 

It is useful to record for the purpose of asymptotic matching that will be performed 
later on that 

(2.14) 
7~ sin 8 

l+ln-  sin0---- ( ' 4a 

2 a  20- 4 
y2 = ---lnx+-ln-+O(x2) as x = r+O.  

7t n : n  
(2.15) 
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The fluid velocities in the corner region are calculated from u1 = 2vP, and v1 = 2aP, 
and indicate that u, = O(1) whereas v, = 0 (In I )  as r -+ 0. The dominance of vertical 
velocity over horizontal velocity indicates that near the corner the horizontal 
momentum imparted to the fluid by the (horizontal) translation of the plate is less 
important than the presence of a free surface which enables the fluid to escape vertically 
upwards without having to overcome as much inertia as a horizontal motion. 

In order to construct an inner solution to this problem when x, y = o( 1 )  as t --f 0, it 
is useful to examine where the magnitude of terms retained in deriving (2.8) and (2.9) 
is equal to the terms neglected. The above local analysis shows that as r = (2 +y2)f -+ 0 ;  
u = O(t), v = O(tlnr), p = O(r1n r )  and 7 = O(P In r).  Thus a typical retained term in, 
say, (2.4) is vt = O(ln r )  whereas a typical neglected term, which represents fluid inertia, 
is OD, = O((t2 ln2r)/r). These two terms are of equal magnitude when t2  In r = O(r). If 
this is solved iteratively then it is clear that when r = O( - t2 In t ) ,  inertial terms are 
important and that in this region u = O(t), u = O(tlnt), p = O(t21n2 t )  and 
l;r = O(t2 In t). These estimates motivate the introduction of the following inner 
variables : 

u = u ,  v = v ,  P = p ,  Y y = - -  
Pint' t21nt’ 
x X=--  (2.16) 

which leads to u,+ v y  = 0, (2.1 7 a) 

(2.17b) 

1 vv PY - 1, uvx-- -- 1 1 
t21nt - t 2 h t  

(2.1 7 c) 

in X 2 - g/ln t ,  - 00 < Y < q(X, t ) /  - t2 In t and subject to free-surface conditions in 
the form 

1 
P =  0,  v= qt-X -+- y x - t ’ U q , .  (; At) 

(2.18) 

The plate condition is U( - c/ln t ,  y, t )  = 2at, and matching conditions resulting from 
the expansion of (2.14) and (2.15) when written in terms of the inner variables are to 
be applied as ( X 2  + Yz)fr+ co. We proceed with the solution to the inner problem by 
posing expansions of the form 

(2.19a, b) 

(2.19c, d )  

U = t In t Ul + tUz + o(t), Y = t In t V, + t V, + o(t), 

P = t2 ln2 tP, + t2 In tPz + o(t2 In t) ,  7 = - t2 In t7, - t27, + o(t2) 

as t --f 0 with X ,  Y = O(1). At leading order we obtain 

%x+ V , , Y  = 0, ( 2 . 2 0 ~ )  

(2.20 b) u1- 2 x 4  x - 2YU1, Y - Ul Ul, x - Vl UI, Y = Pl, x, 
v l - 2 x ~ l , x - 2 y ~ l , Y - ~ l  V,,x-vlK.Y =PLY, (2.204 

= 0, V, = -2q1+2xq1,x+ u, T1,x (2.21) 

in the domain 0 < X < a, - co < Y < ql, subject to free-surface conditions on 
y = 71, 

4 F L M  268 
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and a plate condition, Ul(O, Y )  = 0. Appropriate matching conditions are that 

A .  C. King and D. J.  Needham 

The leading-order problem is seen to be the fully nonlinear partial differential 
equations appropriate to a self-similar unsteady free-surface flow together with 
boundary conditions which, at this order of approximation, suppress the position of 
the plate and reflect a uniform high-pressure region deep down in the fluid. The exact 
solution to this problem is 

(2.22) 

which represents a block of fluid rising uniformly from the high-pressure zone deep 
within the fluid. Some support for this form of solution can be found in the 
photographs of Yong & Chwangs' (1992) paper where a block of fluid with a virtually 
flat free surface may be seen rising up the plate. 

From the point of view of an asymptotic theory we now consider the correction to 
the leading-order problem and examine it in some detail so as to resolve the spatial 
structure of the flow near the plate. This resolution is important as it provides a 
framework for having only two asymptotic regions (provided the correction is 
bounded) and will give us further specific information, such as the slope of the free 
surface as it leaves the plate. The next equations in the hierarchy generated by our 
perturbation process are 

' 2 , X +  b, Y = '7 (2.23 a) 

(2.23 b) 
8a 

u2 -2xu2, x - 2YU2, Y +y u2, y = pz,x, 

8 a  8 V  v2 - - - 2xv2, x - 2 Y&, y + - v2, y = Pz, y - 1, (2.23 c)  x 71 

to be solved in the fixed domain 0 < X < co, - co -= Y < 4a/n. The free-surface 
conditions on Y = 4a/x are 

(2.24) 
40- 

x '  n v, = ---272+2x72,7 8% P2 = - 

together with a plate condition U2(07 Y )  = 2cr and matching conditions as 
( X 2  + Y2)i + 00 in the form 

2a  
~ ~ - - ( l n X + h ) ,  P 2 - - -  x 

4a  4a  
U2 - -- 8, V2 - --{lnr+A), n n (2.25 c, d )  

where h = In( -In t>-ln(4/71;) is regarded as a constant in light of the Van Dyke 
matching principle as applied to series containing logarithms. Here (r,  8) are the usual 
polar coordinates with respect to the Cartesian coordinates (A', Y ) .  

An exact solution to the above quarter-plane problem can be found using an integral 
transform method. The details of this may be found in the appendix to this paper. The 
solution is found to contain no singularities, so that only two asymptotic regions are 
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FIGURE 2. The free-surface elevation in the inner region for c = a and t = 0.01, 0.02, 0.03 

x 

necessary, and confirms our choice of solution of the leading-order problem. The 
correction to the leading-order free-surface elevation, yz(X) can be written as 

(2.26) 
( 2 0 . / ~ X ) ~  dp 

p(1 + p )  sin ( ixp)  r ( p  +:) 
20. 

v z ( X )  = -(lnX+h)+&rx2 - x 

with 0 < c < 2, The integral appearing in (2.26) is of O(l/X2) as A'+ co so that yz(X) 
matches the outer solution satisfactorily. As X + O  we can show that 

+o(X) .  (2.27) 
x 

Equation (2.27) gives the free surface leaving the plate in a linear manner. A calculation 
using (2.16), (2.19) and (2.27) shows that the height of the free surface as it leaves the 
plate is 

x 
y 

x 

and the slope at the free surface, where it intersects the plate, is, at leading order, 

yz = x/(41n t). (2.29) 

This value is initially zero and become negative for t > 0 and may provide a useful 
check on numerical computations which are performed on this type of free-surface flow 
problem. A graph of the evolution of the free surface in the inner region is shown in 
figure 2 for a = and clearly shows the increasing gradient at the free-surface/plate 
intersection. 

3. Conclusions and remarks 
The initial development of a jet which is formed by a vertical plate accelerating into 

a semi-infinite expanse of fluid with a free surface and a gravitational restoring force 
has been studied asymptotically. The main body of fluid is pushed along horizontally 

4-2 
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by the plate, with a gradual rise in free-surface elevation as the plate is approached. The 
outer solution becomes singular at the initial intersection of the plate and free surface 
owing to the neglect of inertia terms in the asymptotic approximation. In a thin region, 
of size 0(-t21n t )  about this point, vertical motion is dominant as the fluid finds it 
easier to rise towards the low-pressure free surface rather than overcome the fluids' 
inertia that it would meet by moving horizontally. These two distinct motions are 
analysed exactly and blended together using matched asymptotic expansions. 

There are further problems that can be addressed by the methods developed in this 
paper. In the slender-ship approximation the steady three-dimensional flow can be 
reduced by a perturbation method to unsteady two-dimensional flow of an inclined 
plate, with a submersion depth less than the fluid depth, which is accelerated into the 
fluid. In this problem the time variable parameterizes the distance down the longest 
axis of the ship. A solution to this problem could be used to construct the initial stages 
of the three-dimensional bow wave of a ship starting from rest. The interaction of a 
surface-piercing cylinder and a swell may also be of some interest although the analysis 
in each region of the flow is more complicated. 

Finally, it should be noted that the asymptotic analysis presented in this paper gives 
a uniform spatial approximation to the flow at t - t  0+, with the parameter cr > 0 fixed. 
However, as can be seen from (2.19), (2.22), (2.27), the two-term development of 7 in 
the inner region is given by 

log (-log t)-log-+log-- 4 2cr 1 -2 ''(')]+;X} (3.1) 
x n n m 

as t --f 0, uniformly for X < 1 .  We observe from (3.1) that a non-uniformity develops 
as cr+O, in particular when t210gtcr - t2 ,  that is, when t = O(e-l/"). Therefore, the 
small-time asymptotics we have developed remain uniform in u provided 

( 3 4  t 4 min {O( I), O(e-l/")}. 

For a 4 1 and t - 0(e-'lg), further consideration is necessary. This observation 
allows the work of Joo et al. (1990) to be placed in context with the present analysis. 
Joo et al. (1990) examine the same problem in the limit a+O with t = O(1). However, 
their asymptotic expansions in cr are non-uniform as t + O+ : the initial condition that 
v + O  uniformly in X as t+O' is not satisfied. Indeed their analysis gives a jump 

initial condition on 7. It must be concluded that their analysis does not resolve the 
short-time development of the flow structure, in the neighbourhood of the free- 
surface/plate intersection point, when u 4 1. In particular, it is to be expected 
that their analysis fails when t - O(ecl/") as c r+O,  when their slope estimate as 
t --f 0' (vX I x z 0  + - cr) becomes yx I x = o  - - cr = O( - l/log t),  which is in accord with 
(2.29), and an inner temporal region which would allow the initial condition on 7 to 
be satisfied is necessary. 

[11 I x=o It-0' t - O - , -  - -u so that they obtain vx Ix=o+-cr  as t+O+, and do not satisfy the 

Appendix A. Reformulation of a boundary value problem 
The boundary value problem in the quarter-plane defined by (2.23), (2.24) and (2.25) 

is not straightforward to solve. To proceed we define new dependent and independent 
variables by 

8u 4cr 
7c' n 

v = V - -  U =  U2,  p =  P2-Y,  7 = 7 2 ,  y =  Y - - ,  X =  X. (A 1) 2 
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u, + vy = 0, 
u - 2x24, - 2yuy = pz,  
v - 2xv, - 2yv, = py 

97 

This gives the more symmetric system 

(A 2) 

(A 3) 
(A 4)  

in the domain - co < y < 0, 0 < x < co and subject to the free-surface conditions 

8ar 4 u  12u 
p(x,O) = ---, u(x,O) = ---27+2xq, x x  x 

and a plate condition u(0, y )  = 2 ~ .  Eliminating the pressure from (A 3) and (A 4) gives 
a vorticity ( 6 )  equation in the form 

t + 2xtx  + 2YEy = 0, (A 6) 
where fl  = uy-v,. Equation (A 6) is readily solved by the method of characteristics, 
which shows that df/dx = - [ /2x  on the curves dy/dx = y / x .  As the vorticity is 
bounded and the outer flow is irrotational the only solution of (A 6 )  is fl  = 0. 

This enables us to introduce a velocity potential 4 such that u = q5x, v = &. Upon 
integration of (A 3) and (A 4) we find that p = po + 34 - 2x4, - 2y&, where po is a 
constant pressure which could be found by higher-order matching. As the value of po 
does not affect the boundedness of our solution or the slope of the free surface we leave 
it undetermined. Our task now is to solve the quarter-plane problem: 

vz4 = 0, $,(O,Y) = 2a, (A 7) 
with free-surface conditions on y = 0 in the form 

and a matching condition as (2 + y'); --f co, 

2u  
y - -(lnx+h)+o(l). x 

Before using integral transforms to solve this linear boundary value problem, some 
further manipulations are necessary. We use standard polar coordinates (r, 6) based at 
the Cartesian origin and redefine the potential and free surface by 

(A 10) $ = 4 +-{r sin 8ln r + 6rcos 8+ ( A  + 1) r sin O}, 

(A 1 1 )  
2a  

i j '= q--(lnr+h), 

so that 5 i s  harmonic with &(r, -fx) = 0 and the free-surface conditions can be written 
as 

4 a  
n 

x 

p0+3&2r& = 
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The conditions 7 = n(1) and 5 = o(r) apply as r + co. The condition 6 = o(r) is still 
not good enough for a transform technique to be applied. If a coordinate expansion 
is made for r $= 1 it is found that 6 = (16a2/37t2)ln r+B+ O(l/r), with B a constant 
related to po  and A, and = O(l/rz). We now make a further redefinition of the 
potential (to obtain both the potential and free surface vanishing as r +  co) using 

1 6a2 
6x2 

$* = $----ln(l + r 2 ) - B ,  'I* = 7. 

This choice of $* is to avoid introducing a singularity for r+O but to force 
$* = O( l/r) as r + 00 and gives rise to the following boundary value problem : 

1 6u2 
671 

V2#* = -7V21n(1+r2) 

subject to $;(r, -$I) = 0 and free-surface conditions on 0 = 0 

where 

We now construct a solution to this problem with $* = O( I), y*  = O(ln r )  as r+  0 and 
#* = O( 1 / r ) ,  r* = O( 1 /r2) as r + co by using Mellin transforms. 

The Mellin transforms of $* and y* are defined in the usual way as 
W 02 

&p, 6') = F - l $ * ( r ,  6') dr, $ ( p )  = rp-'g*(r)dr. 
J o  J o  

Given#* - O ( l ) a n d ~ *  = O(lnr)asr+Oand$* = O(l/r)andr* = O(l/r2)asr+m 
we expect $ to exist and be analytic in the strip 0 < Re ( p )  < 1 of the complex p-plane; 
i will similarly be analytic in 0 < Re(p) < 2. Taking transforms of the partial 
differential equation and using standard results gives 

1 6 v 2 p  
{$+PZ}i  = - 6x sin (np> ' 

The solution of this is 
of the boundary condition 4; = 0 on 6' = -in gives the relation 

= A ( p )  sin p0+ B(p)  cos p6' - 16a2/(6xp sin (inp)). Application 

A ( p )  cos (ipx) + B(p)  sin ($p) = 0. (A 19) 
Transforming the free-surface conditions results in 

If B(p)  is eliminated between these relations we find that A ( p )  satisfies the difference 
equation 

A ( p )  4u 
A ( p  - 1) = 7 { ( p  + 1) (3 + 2p) 
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The solution to this is readily obtained by standard methods as 

where a(p)  is a solution of a(p) / [a(p-  l)] = 1 and is as yet undetermined. This solution 
gives the transform of the free-surface elevation 

To determine a(p )  and hence complete the transform solution we firstly examine the 
behaviour of $ ( p )  as lpl --f 00 and choose a(p) so as to ensure convergence of the Mellin 
inversion integral. Using Stirling’s approximation to the r-function for large 
IpI = Ip + i71 we have 

O(a@ + i7) exp [ p  + @ + i7) In ( 2 c ~ / n ) ] / 7 ~ + p ) ,  7++co 

T -f - co. O(a( p + i7) exp [ p + ( p  + i7) In (2c~l.n) - 2 ~ ~ 7 ] / 7 ~ + p ) ,  

It is clear from this behaviour that to ensure convergence of the inversion integral we 
require p > - 3 and 

(A 24) 
{ ij(p+iT) = 

0(1), 7 + C O  

4P+i7)  = {0(e2.3, 7 ~ -  

A function of period 1 which has this property is 

a(p)  = C/[( - 1)” sin np] (A 25) 
where Cis a constant. The above argument does not exclude the possibility of including 
within a(p)  a further periodic function, C(p),  which is bounded above by O(pn)  as 
lpl --f co (with n chosen so as not to interfere with the convergence of the inversion 
integral). That this function must be constant can be deduced as follows. If $ ( p )  is to 
be analytic in 0 < Re ( p )  < 2, the function C(p)  is prevented from having a singularity 
in this strip. By use of the relation C ( p +  1) = C(p)  we deduce that C(p)  is an entire 
function in the whole p-plane which is bounded above by O(p”).  By Liouville’s 
theorem C(p)  must be a polynomial and the only periodic polynomial is a constant. We 
thus take C(p)  = C. With this justification for the choice of a ( p )  we have, using the 
Mellin inversion formula, 

( 2 ~ / 7 c r ) ~  dp 
y* = (0 < c < 2) ,  (A 26) 

p(  1 + p )  sin (ixp) r( p + $) 
and 

16cT2 ]rPPdp (0 < d <  1) .  
1 d+im c cosp(8 + fx) ‘* =-=ldpi, L(p+l)sin(np)r(p+g) +- 6n psinipx 

(A 27) 
Of particular interest now is the form of free surface that this integral solution 

represents. The line integral in (A26) may be turned into a contour integral in 
Re(p) > 0 by noting that the integrand decays on the semicircle p = Re”, 
-ax < B < fn: and a simple application of the residue theorem gives 

+ c 2cT -l (- 1)”(2cT/xr)2“ 
v*=-(-) 2n n: c 2n(2n + 1 )  r (2n  + i) . 
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FIGURE 3. The function r* with cr = a. 

FIGURE 4. The inversion contour for the free-surface elevation in the p = T+ i7 plane. 

The ratio test reveals that this series is convergent for all r =f= 0. In fact for large r the 
series is asymptotic and r* = O(l/r2) as expected. At r = 0 the above series diverges 
and a rather different approach to the evaluation of y* is needed for small r .  A graph 
of y*, computed from (A 28), is given in figure 3 and shows a logarithmic divergence 
as r-+ 0. As the line integral cannot be made into a contour integral by the addition of 
a semicircle in the left half-p-plane (due to the growth in the gamma function) we 
consider a rectangular contour as shown in figure 4. The contribution from the line 
segments L, and L, can be made arbitrarily small owing to the estimate (A 24) and the 
use of the ML lemma. Accordingly we obtain 

+Residues at p = 0, - 1 
( 2 r / 7 ~ r ) ~  dp -c'+im 

7" = 
-4 p(p + 1) sin (inp) r ( p  +:) 
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where 1 < c‘ < 2. This integral can be bounded above by 

(20/7cr)” dp 16 D ( z r ,  
-c‘+im is --c,-io3 p( p + 1) sin (i7cp) r( p + i) 

where D is an O( 1) constant. Evaluating the residues at the double and single poles at 
p = 0, - 1 leads to the following asymptotic expansion, valid as r --+ 0 : 

Recalling that the physical free-surface elevation was T~ = (20/7c) (In r + A) + r* we can 
eliminate the logarithmic term by the choice C = - (8a2/7t) r(:) and the forrn of free 
surface close to the plate is seen to be 

T ~ = -  In(-1nt)-In - +In - -1--+- +o(r). (A 32) 2c{ 7c (3 (Y) r’(3 r(i) .t) 8 0  

A rather similar analysis may be carried out for the potential $*. This is found to be 
regular everywhere. We omit these details as they are similar to the analysis for r*. We 
have now established the boundedness of the correction to the leading-order problem 
over the range 0 < r < co and no further asymptotic regions are necessary. 

The slope of the free surface as it leaves the plate can now be computed and we find, 
using qs = T~ X ,  = - (1 / t 2  In t )  { - t2 In t ~ ~ ,  - t2q,, + . . .}, that the leading-order result 
is 

7, = n/(4 In t )  (A 33) 

REFERENCES 
CHWANG, A. T. 1983 Nonlinear hydrodynamic pressure on an accelerating plate. Phys. Fluids 26, 

COINTE, R. 1989 Solid-liquid impact analysis. ASME J .  Ofshore Mech. Arc. Engng 111, 109. 
COINTE, R. & ARMAND, J.-L. 1987 Hydrodynamic Impact Analysis of a cylinder. ASME J .  Offshore 

FRANKEL, I. 1990 Compressible flow induced by the transient motion of a wavemaker. Z .  Angew. 

GREENHOW, M. 1987 Wedge entry into initially calm water. Appl. Ocean Res. 9, 214. 
GREENHOW, M. 1993 A complex variable method for the floating body boundary-value problem. 

GREENHOW, M. & LIN, W. M. 1983 Nonlinear free surface effects: experiment and theory. Rep. 

HOWISON, S . ,  OCKENDON, J .  & WILSON, S. K. 1991 Wedge entry problems at small deadrise angle. 

Joo, S. W., SCHULTZ, W. W. & MESSITER, A. F. 1990 An analysis of the initial wavemaker problem. 

ROBERTS, A. J. 1987 Transient free surface flows generated by a moving vertical plate. Q. J.  Mech. 

YONG, S. A. & CHWANG, A. T. 1992 Experimental study of waves produced by an accelerating plate. 

383. 

Mech. Arc. Engng 109, 237. 

Math. Phys. 41, 628. 

J.  Comput. Appl. Maths 46, 115. 

83-19. Dept. Ocean Engng, MIT. 

J .  Fluid Mech. 222, 215. 

J.  Fluid Mech. 214, 161. 

Appl. Maths 40, 129. 

Phys. Fluids A 4 2456. 


